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Abstract The existence of solutions to the travelling-wave equations governed by an autocatalytic reaction of
order p (p ≥ 1) and an autocatalytic decay step of order q (q ≥ 1) are examined in the limit of large p. Two cases
are treated, q of O(1) and q ∼ p � 1. In the first case, an upper bound kcrit is found for k for the existence of a
solution, where k is a dimensionless measure of the strength of the decay step. In the second case, an upper bound
on k is also found when q < p. For q ≥ p, there is no upper bound on k and solutions exist for all (positive) values
of k.

Keywords Autocatalytic reactions · High-reaction-order asymptotics · Propagating reaction fronts ·
Ranges of existence

1 Introduction

The coupling of chemical reactions with diffusion can, under appropriate conditions, lead to the propagation of
locally applied stimuli in the form of travelling waves. Such waves are a fundamental aspect of many chemical and
biological processes and an understanding of their basic properties is a necessary prerequisite for an appreciation of
the complex structures that are often involved in such systems. The most basic form that can arise is a propagating
reaction front which is essentially a local step-like change in concentration without returning to the original state;
propagating reaction fronts convert the reacting medium from one state (usually the unreacted state) ahead to a
different state (usually the fully reacted state) at the rear.

Autocatalytic chemical reactions, typically

A + pB → (p + 1)B rate k0abp, p ≥ 1 (1)

form the basis for the development of reaction fronts. Such reactions are, in spatially distributed systems and
under some relatively unrestrictive initiation conditions, capable of sustaining permanent-form travelling waves.
These are constant-speed, constant-form propagating reaction fronts that convert the substrate A (at some uniform
concentration a0 ahead of the front) fully into the autocatalyst B. In (1) we are assuming that p ≥ 1, a and b are,
respectively, the concentrations of A and B, and k0 is a constant. The cases of quadratic autocatalysis (p = 1) and
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cubic autocatalysis (p = 2) have previously been examined in considerable detail, see [1–4] for example, and the
more general case has been treated in [5].

An important feature of at least some of the systems for which reaction (1) is a relevant model, is that the
autocatalyst B is not indefinitely chemically stable but can decay to an inert product of reaction via some mechanism
of the form

q B → product rate k1bq , (2)

where k1 is a constant and we are taking q ≥ 1. Reactions (1, 2) lead to the travelling-wave equations in dimensionless
variables; see [2,6,7] for example:

a′′ + ca′ − abp = 0, (3)

Db′′ + cb′ + abp − kbq = 0, (4)

where D = DB/DA is the ratio of diffusion coefficients of the autocatalyst and substrate. The parameter
k = k1aq−p−1

0 /k0 measures the rate of autocatalyst decay by reaction (2) relative to its production by reaction
(1). Primes denote differentiation with respect to the travelling co-ordinate y and c is the (constant) dimension-
less propagation speed. We can assume that c ≥ 0 without any loss in generality. The boundary conditions for
Eqs. 3, 4 are, with k > 0,

a → 1, b → 0 as y → ∞, a → as, b → 0 as y → −∞, (5)

where as is a constant (dependent on k and D) which is determined as part of the solution to the travelling-wave
problem. A travelling wave is then a non-trivial, i.e., a �≡ 1, b �≡ 0, solution to Eqs. 3–5. From this it then follows
that as < 1.

Some specific cases have already been treated in detail. For quadratic autocatalysis and linear decay (p = q = 1)
[6], minimum-speed (or linearly determined) travelling waves can exist only for k < 1, a result confirmed by
numerical integrations of the corresponding initial-value problem. For k ≥ 1, the effect of the termination step (2)
is too strong for reaction-front initiation, the autocatalyst decays away and the system returns to its original state
through diffusion. For quadratic autocatalysis with quadratic decay (p = 1, q = 2) [8], travelling waves exist for all
(positive) values of k, the weaker termination step in this case is not able to overcome the production of autocatalyst
by step (1). For cubic autocatalysis with quadratic decay (p = q = 2) and with linear decay (p = 2, q = 1) [9]
there are upper bounds on k for the existence of travelling waves. In the first case, the situation is, in many respects,
similar to the case p = q = 1, with existence requiring k < 1. The second case (p = 2, q = 1) is significantly
different, the solutions to the travelling wave equations have two solutions for 0 < k < kcrit, with a saddle-node
bifurcation occurring at k = kcrit and no solutions for k > kcrit. The value of kcrit was found to be relatively small,
for D = 1, kcrit = 0.0465.

The general case was examined in [7], where some conclusions were drawn, perhaps a little conjecturally, basically
following what was seen for the specific examples in [6,8,9]. There it was suggested that there are travelling-wave
solutions for all k if p < q, travelling waves only for k < 1 if p = q and, if p > q, there is a value kcrit of k (perhaps
small) with travelling-wave solutions only for k ≤ kcrit. No specific values for kcrit were given in [7], though some
estimates were suggested.

In this paper we consider the problem given by Eqs. 3–5 in the limit of large p. We consider two cases, q of O(1)
and q ∼ p � 1. Our calculations confirm the predictions in [7], at least in this limit. With q of O(1), there is an
upper bound kcrit on k of O(p−3) for the existence of travelling waves, with an explicit expression for kcrit being
obtained. With q ∼ p, we find that there is a transition at p = q from having bounds on k for existence (q < p)
to having no restriction on k (q > p). The case without the decay reaction (2), where the asymptotic structure is
simpler than that required here, has been treated in [10,11], our solutions agree with these previous calculations in
the limit as k → 0.

The approach that we adopt here has some similarities with high-activation-energy asymptotics in combustion
theory, where it has been seen, see [12–14] for example, that such asymptotic solutions can give reliable qualitative
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Travelling waves in autocatalytic chemical systems with decay 197

(and in some cases even quantitative) insights about the nature of the flame, both its structure and propagation
speed. In this asymptotic analysis, and in the situation described here, there is a relatively thin reaction zone, ahead
of which is a diffusive region (in high-activation-energy asymptotics this is often referred to as the pre-heat zone).
At the rear of the reaction zone is a much thicker decay region (termination region), where the final conditions are
attained.

Asymptotics based on high powers of autocatalysis have been used with some success in understanding the
structure of isothermal ‘flame balls’ (steady reaction–diffusion structures governed by autocatalytic reactions)
[15,16] and in estimating the conditions where planar reaction fronts can become longitudinally unstable [11].
Finally, we note that the cases when p, q < 1 are qualitatively different to those referenced above and treated here.
A full description of this case is provided in [17].

2 Asymptotic solutions for p large

We look for a solution of Eqs. 3, 4, subject to boundary conditions (5), valid for p large. We treat the two cases,
namely q of O(1) and q ∼ p. For both cases we introduce the scalings

c = c p−1, k = k p−3, c, k of O(1) as p → ∞. (6)

In both cases, the asymptotic solution has three regions, a thin reaction zone, with a thicker diffusive region ahead
and a thicker decay region at its rear. We begin with the case when q is of O(1).

2.1 q of O(1)

We start in the diffusive region where we scale ξ = yp−1, giving an O(p) thickness for this region. Since b < 1 in
this region, we can neglect the autocatalytic reaction in the limit as p → ∞. We look for a solution, after applying
(6) and the above scaling for y, by expanding

a(ξ ; p) = a0(ξ)+ p−1a1(ξ)+ · · · , b(ξ ; p) = b0(ξ)+ p−1b1(ξ)+ · · · ,
c(p) = c0 + p−1c1 + · · · (7)

At leading order we have

a0(ξ) = 1 − e−c0ξ , b0(ξ) = e−c0ξ/D. (8)

In (8) we have anticipated that a is small and b 
 1 in the reaction zone (to match with which we let ξ → 0). At
O(p−1) we find

a1(ξ) = c1ξ e−c0ξ ,

b1(ξ) =
(

S1 − c1

D
ξ
)

e−c0ξ/D + Dk

c2
0q(q − 1)

e−qc0ξ/D, (q > 1)

=
[

S1 −
(

c1

D
+ k

c0

)
ξ

]
e−c0ξ/D, (q = 1) (9)

for some constant S1 to be determined.
We next consider the reaction zone, in which we leave y unscaled and write

a(y; p) = p−1 A(y; p), b(y; p) = 1 − p−1 B(y; p) (10)

and look for a solution by expanding

A(y; p) = A0(y)+ p−1 A1(y)+ · · · , B(y; p) = B0(y)+ p−1 B1(y)+ · · · . (11)
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At leading order we obtain, on using (6, 7),

A′′
0 − A0e−B0 = 0, DB ′′

0 − A0e−B0 = 0, (12)

where primes denote differentiation with respect to y. Eliminating the reaction terms gives A′′
0 = DB ′′

0 . If we now
integrate twice and match with the solution in the diffusive region as y → ∞, we obtain

A0 = D(B0 + T0), (13)

where

T0 = DS1 if q = 1, T0 = DS1 + D2k

c2
0q(q − 1)

if q > 1. (14)

Applying (13) in (12), integrating and matching with the diffusive region leads to

B ′2
0 = c2

0

D2 − 2(B0 + T0 + 1)e−B0 . (15)

Since A0 → 0 as y → −∞, B0 → −T0. Expression (15) then gives

c2
0 = 2D2 eT0 , (16)

where T0 is given by (14).
We need to consider briefly the equations at O(p−1). As above, we can eliminate the reaction terms and integrate

once. Matching with the diffusive region then gives

A′
1 + c0 A0 = DB ′

1 + c0 B0 − Dk

c0q
, for q ≥ 1. (17)

Equation 17 shows that

B1 ∼
(

c0T0

D
+ k

c0q

)
y + · · · as y → −∞. (18)

Finally we consider the decay region. Here a ≡ 0 (so that we can ignore the autocatalytic reaction) and we scale
y by Y = yp−2, leaving b unscaled. We look for a solution by expanding

b(Y ; p) = b0(Y )+ b1(Y )p
−1 + · · · (19)

on −∞ < Y < 0. We find at leading order, using (7) and (10) to match with the reaction zone at leading order,

b0(Y ) = ekY/c0 (q = 1), b0(Y ) = 1(
1 − k(q−1)Y

c0

)1/(q−1)
(q > 1). (20)

In (20), b0(Y ) → 0 as Y → −∞ as required.
On matching at O(Y ) with the reaction zone, using (18), we find that

T0 = − Dk(q + 1)

qc2
0

(q ≥ 1). (21)

Applying (21) in expression (16) gives the relation

c2
0 = 2D2 exp

(
− Dk(q + 1)

qc2
0

)
(22)

and it is expression (22) that determines the (leading-order) wave speed c0 in terms of D and the decay parameter
k. We note that, if k = 0, c0 = √

2D, or c ∼ √
2Dp−1 + · · · for p large, in agreement with previous results. We

can write (22) in the form

k = q

D(q + 1)
c2

0

(
log(2D2)− log(c2

0)
)
. (23)
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Fig. 1 A representative plot of c2
0 against k obtained

from expression (23) to show that there is a critical
value kcrit of k for the existence of solutions. The value
of kcrit is given in (24)
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Fig. 2 A graph of W (α) obtained from the initial-value problem
(40, 41)

If we now regard k as a function of c2
0, we see that k → 0+ as c2

0 → 0, k = 0 at c2
0 = 2D2 and that k has a turning

point (local maximum) at c2
0 = 2D2 e−1, giving a critical value kcrit of k

kcrit = 2q D e−1

(q + 1)
, so that kcrit = 2q D e−1

(q + 1)
p−3 + · · · as p → ∞. (24)

A representative plot of c0 against k obtained from (23) is shown in Fig. 1. The figure shows the existence of
two solution branches for k < kcrit and a saddle-node bifurcation at k = kcrit and no solutions for k > kcrit . This is
the behaviour seen in [6] for p = 2, q = 1. For these values (and D = 1), expression (24) estimates kcrit = 0.046,
only slightly less than the value of 0.0465 calculated in [6] by solving the travelling-wave equations (3–5). In [7]
upper bounds on kcrit were obtained for the existence of a solution for general values of p and q. These gave
kcrit < e−1 p−1 (for D = 1) in the limit of large p and q of O(1). This bound is considerably higher, of O(p−1),
than the result, of O(p−3), provided by (24).

We next consider the case when q is large, of O(p).

2.2 q ∼ p � 1

To deal with the case when q ∼ p � 1, we put

q = q0 p, with q0 of O(1) as p → ∞ (25)

and we still scale c and k by (6).
As above, we start in the diffusive region, with the same scaling ξ = yp−1 for y and look for a solution by

expanding as in (7). Now, since b < 1 in this region, both reaction terms can be neglected in the limit as p → ∞.
For this case, we note that a0(ξ) and b0(ξ) are still given by (8), a1(ξ) is as given in (9), but now

b1(ξ) =
(

T1 − c1ξ

D

)
e−c0ξ/D (26)

for some constant T1 to be found.
In the reaction zone, y is left unscaled (as before) and a and b are scaled as in (10), with a solution sought by

expanding as in (11). At leading order we still obtain Eq. (12), from which we eliminate the reaction terms and
integrate to obtain, on matching with the diffusive region,

A0 = D(B0 + T1). (27)
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Applying this in (12) now gives

B ′
0

2 = c2
0

D2 − 2(B0 + T1 + 1) e−B0 . (28)

From (27), B0 → −T1 as y → −∞, so that (28) gives

c2
0 = 2D2 eT1 (29)

analogous to (16). Since, with k > 0, the wave speed is less than in the purely autocatalytic system (for which
c2

0 = 2D2 [10,11]), we can expect T1 to be negative. As above, we need to consider briefly the equations at O(p−1).
These give, following closely the argument given to derive Eq. 17,

A′
1 + c0 A0 = DB ′

1 + c0 B0. (30)

From (30) we find that

B1 ∼ c0T1

D
y + · · · as y → −∞. (31)

We finally consider the decay region which, since both reactions are small in this region, needs to be dealt with
in a different way to that used previously. It is the solution in this region that determines T1 and hence, from (29),
the relationship between c0 and k. Before considering the solution in this region in detail, it is useful to consider
how b(y) → 0 at the rear of the wave. Thinking particularly of the situation q ∼ p � 1, the main balance as

y → −∞ in Eq. 4 is cb′ − kbq 
 0, giving b 

(
(q − 1)

k

c
|y|

)−1/(q−1)

. We can express this, using the scalings

for c, k and q in (6, 7) and (25), as

b ∼
(

q0
k

c0

|y|
p

)−1/q0 p

as y → −∞, p large. (32)

Expression (32) gives an insight into the nature of the solution in the decay region and suggests that, for this region,
we write

b = exp (p−1ψ(η; p)), where η = yp−1. (33)

Note that this region has a scaling different to the previous case, now having a thickness of O(p).
If we substitute (33) in (4) and then look for a solution by expanding in inverse powers of p, we find that the

leading-order term ψ0(η) satisfies the equation

Dψ ′′
0 + c0ψ

′
0 − k eq0ψ0 = 0 (−∞ < η < 0), (34)

where primes now denote differentiation with respect to η, subject to, on matching with the reaction zone,

ψ0(η) ∼ T1

(
1 − c0

D
η · · ·

)
as η → 0− (35)

with T1 and c0 related by (29). We note that, from Eq. 34,

ψ0(η) ∼ − 1

q0
log

(
q0k

c0
|η|

)
as η → −∞ (36)

which, on using (33), gives the form for b in (32).
We can convert the problem given by (34–36) into an initial-value problem. It is, perhaps, easier to deal with

if we first transform from −∞ < η < 0 to 0 < η < ∞ by making the transformation η = −c0

D
η. We then put

ψ0 = T1 − q−1
0 u(η). This results in the problem

u′′ − u′ + α e−u = 0 on 0 < η < ∞,

u ∼ −q0T1 η + · · · as η → 0+, (37)

u ∼ log

(
q0k D

2D
η

)
+ (q0 − 1)T1 as η → ∞,
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where primes now denote differentiation with respect to η, and where

α = q0k

2D
e(q0−1)T1 , (38)

on using expression (29). We next write Eq. 37a in phase plane variables (u, w), where w ≡ u′, to obtain

dw

du
= (w − α e−u)

w
(0 < u < ∞). (39)

Finally, we make the change of independent variable x = α e−u in (39). This results in the equation

dw

dx
= x − w

xw
(x > 0). (40)

Now, as η → ∞, u → ∞ corresponding to x → 0, and, for x small, expression (37)c and Eq. 40 give

w ∼ x − x2 + 3x3 + · · · as x → 0. (41)

To proceed, we solve (40) numerically as an initial-value problem, starting with (41), for increasing values of
x , giving the solution w(x). Now, η → 0 corresponds to u → 0 and hence to x = α. Thus, in effect, we have
calculated w = W (α) for increasing α. A graph of W (α) calculated in this way is shown in Fig. 2. However, as
η → 0, w → −q0T1, from (37)b, so that

T1 = −W (α)

q0
. (42)

Figure 2 suggests that W ′(α) > 0 and, in fact we can show that

W (α) > 0, W ′(α) > 0 for all α > 0. (43)

Proof Clearly from (41), w(x) > 0 and hence W (α) > 0 for x or α sufficiently small. To establish the result that
w(x) > 0 for all (positive) x , we assume that there is an x1 > 0 at which w(x1) = 0. Hence there must be some
0 < x0 < x1 at which

w(x0) > 0, w′(x0) = 0, w′′(x0) ≤ 0. (44)

Equation 40 gives, at x = x0, w
′′(x0) = x−2

0 > 0, leading to a contradiction with (44) and hence w(x) > 0 for all
x > 0. The right-hand side of (40) is then bounded and thus has a solution for all x > 0. Now w′(x) can be zero
only at discrete values of x . Suppose x = x0 > 0 is the smallest of these. Then, since w′(0) > 0 from (41), w(x0)

satisfies the conditions in (44), with again w′′(x0) = x−2
0 > 0 contradicting (44). This establishes the result that

w′(x) > 0 for all x > 0, and thus gives (43). �

Equation 40 gives

w(x) ∼ x1/2
(√

2 − 2x−1/2 + · · ·
)

as x → ∞, (45)

so that W (α) ∼ √
2α for α large.
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Fig. 3 Plots of c0 against k obtained from expressions (46) with D = 1.0 for (a) q0 = 0.5, showing a critical value (upper bound) on
k for the existence of a solution, (b) q0 = 1.0 and (c) q0 = 2.0, the curves being monotone decreasing with solutions for all k ≥ 0

From expressions (38) and (42)

k = 2Dα

q0
exp

[
(q0 − 1)

q0
W (α)

]
, c2

0 = 2D2 exp [−W (α)/q0] (46)

so that a saddle-node bifurcation, i.e., a critical value for k, occurs where dk/dα = 0, that is, where

1 + (q0 − 1)

q0
αW ′(α) = 0. (47)

Since, from (43), W ′(α) > 0, expression (47) shows that a critical value for k requires q0 < 1 (or q < p). For
q0 ≥ 1 (or q ≥ p), the graph k against α, and hence against c0, is monotone.

We can use expression (46) to obtain plots of c0 against k for given values of q0 and D. Having determined W (α)

by solving the initial-value problem (40, 41) for a given value of α, we apply this in (46) to obtain both c0 and k
for that value of α. By doing this for increasing values of α we obtain ranges of values for c0 and k, which we can
then plot. Typical examples (all with D = 1.0) are shown in Fig. 3 for q0 = 0.5 (Fig. 3a), showing the existence
of a critical value of kcrit 
 2.735 for k with two solution branches for k < kcrit , and for q0 = 1.0 and q0 = 2.0
(Fig. 3b, c), where the curves are monotone decreasing.

For α small, (41) has W (α) 
 α with (46) then giving

k = 2D

q0
α + · · · , c2

0 = 2D2
(

1 − α

q0
+ · · ·

)
.
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Eliminating α shows that

c0 = √
2D

(
1 − k

4D
+ · · ·

)
for k small. (48)

Expression (48) gives the behaviour of c0 for k small, on the upper solution branch when q0 < 1. This linear
behaviour can clearly be seen in Fig. 3a. For α large, W (α) ∼ √

2 α1/2 + · · · , so that

c2
0 ∼ 2D2 exp

(
−

√
2α1/2

q0

)
, k ∼ 2Dα

q0
exp

(
(q0 − 1)

√
2α1/2

q0

)
.

Eliminating α then gives

k ∼ Dq0

[
log(2D2)− log(c2

0)
]2

(
2D2

c2
0

)q0−1

(q0 �= 1). (49)

Expression (49) shows the nature of the lower branch solution for q0 < 1, with c0 → 0, k → 0 and, for q0 > 1,
shows how c0 → 0 as k → ∞. Note that, for q0 = 1,

c2
0 ∼ 2D2 exp

⎡
⎣−

(
k

D

)1/2
⎤
⎦ , for k large. (50)

The more rapid decrease of c0 with k, given by (50), for q0 = 1 compared to the much slower decrease with k,
given by (49), can be seen by comparing Fig. 3b, and c.

We can also use expressions (46) to calculate the critical values of k. From Eq. 40 and expression (47), the
critical value occurs at α = αc when W (αc) = αc(1−q0), with αc being determined from the numerical solution of
Eq. 40. Then, kcrit and the corresponding c0,crit can be calculated from

kcrit = 2D

q0
αc exp

[
− (1 − q0)

2

q0
αc

]
, c2

0,crit = 2D2 exp

[
− (1 − q0)

q0
αc

]
. (51)

A graph of kcrit against q0 is shown in Fig. 4a (for D = 1.0), with the corresponding values of c0,crit shown in
Fig. 4b. For q0 small, αc will be small, with from (41) αc − α2

c 
 αc(1 − q0), giving αc 
 q0. Expressions

(51) then give kcrit 
 2D e−1 in agreement with (24). For q0 
 1, αc will be large, W (αc) 
 √
2 α1/2

c , giving
αc 
 2/(1 − q0)

2 and

kcrit ∼ 4D

(1 − q0)2
e−2, c2

0,crit ∼ 2D2 e−2/(1−q0) for 0 < (1 − q0) � 1. (52)

Expression (52) shows how kcrit becomes large, with the corresponding c0,crit becoming small, as q0 → 1 from
below. Expression (52) for kcrit is shown by the broken line in Fig. 4a.

3 Discussion and conclusions

We have considered the effects that a decay or termination step (2) can have on a travelling wave arising from the
autocatalytic reaction (1) for high orders of autocatalysis, p � 1. We treated two cases, namely when the decay
step q is of O(1) and when q is large, of O(p). In the first case we found that the decay step always has a major
influence and limits the existence of travelling waves to a finite range of k (a measure of the strength of the decay
rate) to 0 ≤ k ≤ kcrit. There is a saddle-node bifurcation at k = kcrit , with two solution branches for 0 < k < kcrit

and no solutions for k > kcrit. We gave an estimate (24) for kcrit , which showed that kcrit was very small, of O(p−3),
for p large. The previous upper bounds on kcrit given in [7] are somewhat of an overestimate, being of O(p−1) for
p large, over those obtained from our large p analysis. Thus, for high values of p, the effect of the termination step
(2) is to severely limit the range of existence of travelling-wave solutions.
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Fig. 4 Plots of (a) kcrit and (b) c0,crit against q0 for D = 1.0, obtained from expression (51). Expression (52) for kcrit is shown by the
broken line

When the decay and autocatalyst orders are comparable, q ∼ p � 1, we found two possibilities. For q < p the
situation is analogous to the previous case, with there being a critical value kcrit for k and travelling-wave solutions
only for 0 ≤ k ≤ kcrit (Fig. 3a). The values of kcrit depend on q (more precisely on q0 where q0 = q/p) (see
Fig. 4a), with the values of kcrit become large as q → p (or q0 → 1). Our analysis gives

kcrit ∼ 4e−1

(p − q)2 p
for p � 1, (p − q) � 1. (53)

For q > p (or q0 > 1) there is no restriction on k for the existence of a travelling wave (Fig. 3c).
When q = p (or q0 = 1) there is a transition from having a restriction on k(q < p) to having no restriction

(q > p) for the existence of a solution. Our analysis suggests that travelling waves exist when p = q for all k
(Fig. 3b), at least in the limit as p → ∞. This result is contrary to what is seen when p = q = 1 [6] and when
p = q = 2 [9]. A possible explanation for this difference could arise in the argument given in [6,9] to establish the
necessary condition k < 1. This argument puts a = 1 − a in Eq. 4, then integrating results in, with p = q,

(1 − k)
∫ ∞

−∞
bp dy =

∫ ∞

−∞
a bp dy > 0. (54)

Since both integrals in (54) are strictly positive, having k > 1 is then required. However, in the large-p limit, the
integral on the left-hand side of (54) does not exist since b ∼ (−y)−1/p as y → −∞, see expression (32), and so
invalidates the above argument. The question still remains as to whether solutions exist when p = q only in the
limit as p → ∞ or whether there is some finite (large) value of p where solutions can exist when k = 1.

The basic structure of the travelling wave for p large is a thin reaction zone, where the autocatalytic reaction (1)
is the dominant mechanism, and a much thicker decay or termination region, where the decay step (2) is dominant.
This is also the structure of the travelling wave in general when k is small. To obtain a solution of (3–5) valid for
k � 1, we expand

a(y; k) = a0(y)+ k a1(y)+ · · · , b(y; k) = b0(y)+ k b1(y)+ · · · c(k) = c0 + k c1 + · · · . (55)

At leading order we obtain the travelling-wave equations for the autocatalytic reaction

a′′
0 + c0a′

0 − a0bp
0 = 0, Db′′

0 + c0b′
0 + a0bp

0 = 0, (56)

subject to the boundary conditions

a0 → 1, b0 → 0 as y → ∞, a0 → 0, b0 → 1 as y → −∞, (57)
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Fig. 5 (a) Plot of p c0 against p for D = 1.0 obtained from Eqs. (56, 57). The asymptotic limit p c0 → √
2 as p → ∞ is shown by

the broken line. (b) Plots of −c1 against p for different values of q obtained from the compatibility condition (64). c 
 c0 + c1k for k
small

where primes again denote differentiation with respect to y. Boundary conditions (57) show the singular nature of
the solution as k → 0, since we really require b → 0 as y → −∞, as given in (5), when k > 0. This condition is
not allowable from equations (56). A plot of c0 against p for D = 1.0 is given in [5]. In Fig. 5a values of p c0 are
plotted against p (again for D = 1.0) obtained from a numerical integration of (56, 57). The asymptotic limit of
p c0 → √

2 as p → ∞ is shown by the broken line. Figure 5a shows that this asymptotic limit is approached only
relatively slowly as p increases.

At O(k) we have

a′′
1 + c0a′

1 − (bp
0 a1 + pa0bp−1

0 b1) = −c1a′
0,

(58)

Db′′
1 + c0b′

1 + (bp
0 a1 + pa0bp−1

0 b1) = −c1b′
0 + bq

0 .

Equations (58) show that b1 ∼ y/c0 as y → −∞. Hence

b ∼ 1 + ky

c0
+ · · · , a → 0, as y → −∞. (59)

Expressions (59) lead to an outer (decay) region of thickness O(k−1) in which we put Y = ky. The leading-order
problem in this region on −∞ < Y < 0 is, still with p = q,

c0b′ − bq = 0, b ∼ 1 + ky

c0
+ · · · as Y → 0−, b → 0 as Y → −∞. (60)

The required solution is, following (19),

b = eY/c0 (q = 1), b =
(

1 − (q − 1)Y

c0

)−1/(q−1)

(q > 1). (61)

The structure of this outer region depends on the ratio of diffusion coefficients D only through the leading-order
wave speed c0.

To calculate c1 we need to consider (58). Now the equations in (58) have a complementary function (a′
0, b′

0) which
satisfies homogeneous boundary conditions. Hence a compatibility condition is required for the non-homogeneous
problem (58) and this will determine c1. To derive this condition we require the adjoint problem for U (y), V (y)
given in [18], namely

d

dy

(
ec0 yU ′) − bp

0 ec0 y(U − V ) = 0,

(62)
d

dy

(
ec0 y V ′) − pa0bp−1

0 ec0 y(U − V ) = 0,
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on limiting attention to the case D = 1 for simplicity, subject to

U, V → 0 as y → ±∞. (63)

Applying (62, 63) in (58) then leads to the compatibility condition

c1

∫ ∞

−∞
ec0 y(a′

0U + b′
0V )dy =

∫ ∞

−∞
ec0 y bq

0 V dy = 0. (64)

It is from condition (64) that we determine c1. The adjoint problem (62, 63) has to be solved numerically, with (64)
then being used to calculate c1. Graphs of −c1 against p are shown in Fig. 5b for q = 1, 2, 4. The graphs show
that −c1 increases as p is increased (for a given value of q) and that −c1 decreases as q is increased (for a given
value of p). We recall that c 
 c0(p)+ kc1(p, q) for k small and that c0 decreases as p is increased. This suggests
that the range of existence of a solution (requiring c > 0) will decrease as p is increased and that this range of
existence might be larger for a given value of p if q is increased. These conclusions are fully in line with the results
from our large p analysis, see Fig. 4a for example.
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